Instrumental variables I

Session 11

PMAP 8521: Program evaluation Andrew Young School of Policy Studies

Plan for today

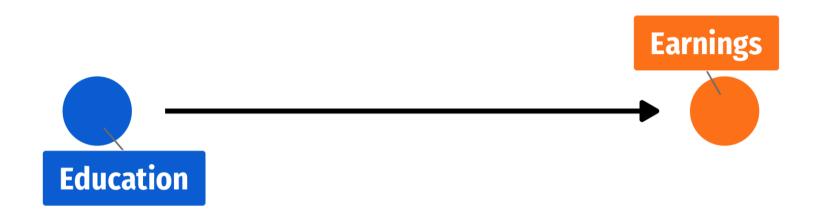
Endogeneity and exogeneity

Instruments

Using instruments

Endogeneity and exoegneity

Does education cause higher earnings?



$$Earnings_i = \beta_0 + \beta_1 Education_i + \varepsilon_i$$

If we ran this regression, would β_1 give us the causal effect of education?

$$Earnings_i = \beta_0 + \beta_1 Education_i + \varepsilon_i$$

No!

Omitted variable bias!

Unclosed backdoors!

Endogeneity!

Exogeneity and endogeneity

Exogenous variables

Value is not determined by anything else in the model

In a DAG, a node that doesn't have arrows coming into it

Exogeneity

Education is exogenous: no arrows into it

Exogeneity and endogeneity

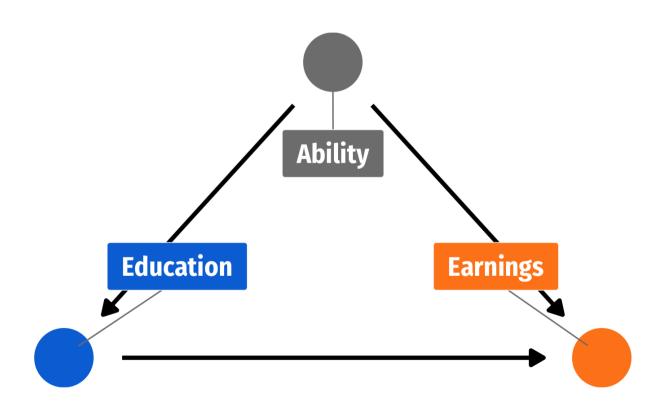
Endogenous variables

Value is determined by something else in the model

In a DAG, a node that has arrows coming into it

Endogeneity

Education is endogenous: Ability → Education

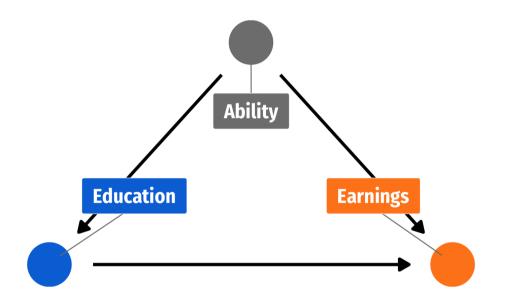


Exgoeneity

What would exogenous variation in education look like?

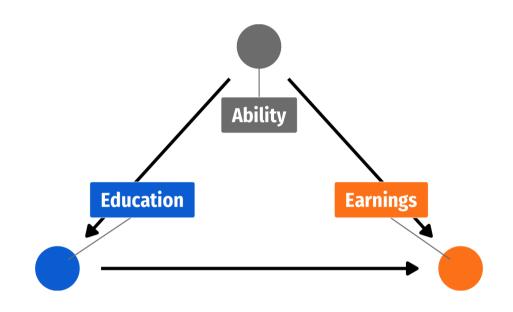
Choices to get more education that are essentially random (or at least uncorrelated with omitted variables)

We'd like education to be exogenous (an outside decision or intervention), but it's not!



Part of it is exogenous, but part of it is caused by ability, which is in the DAG

Fixing endogeneity with DAGs



Close backdoor and adjust for ability

Adjustment filters out the endogenous part of education and leaves us with just the endogenous part

$$Earnings_i = \beta_0 + \beta_1 Education_i + \beta_2 Ability_i + \varepsilon_i$$

	Outome = wage		
	Unadjusted	Adjusted	
(Intercept)	-59.378***	-85.571***	
	(10.376)	(7.198)	
educ	13.124***	7.767***	
	(0.618)	(0.456)	
ability		0.344***	
		(0.010)	
Num.Obs.	1000	1000	
R2	0.311	0.673	
F	451.244	1025.794	
* p < 0.1, ** p < 0.05, *** p < 0.01			

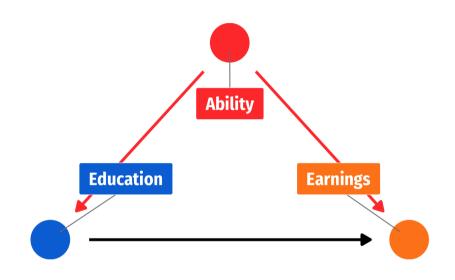
Unadjusted is wrong!

Adjusted is right!

One year of education causes hourly wage to increase by \$7.77

(FAKE DATA)

But we can't measure ability!



$$Earnings_i = \beta_0 + \beta_1 Education_i + \beta_2 Ability_i + \varepsilon_i$$

Unmeasurable ability node is in the error term (ϵ)

$$Earnings_i = \beta_0 + \beta_1 Education_i + \varepsilon_i$$

Split exogeneity and endogeneity

What if we could somehow separate education into its endogenous and exogenous parts?

$$egin{aligned} & ext{Earnings}_i = & eta_0 + eta_1 ext{Education}_i + eta_i \ & eta_0 + eta_1 (ext{Education}_i^{ ext{exog.}} + ext{Education}_i^{ ext{endog.}}) + arepsilon_i \ & eta_0 + eta_1 ext{Education}_i^{ ext{exog.}} + eta_1 ext{Education}_i^{ ext{endog.}} + arepsilon_i \ & eta_0 + eta_1 ext{Education}_i^{ ext{exog.}} + \omega_i \end{aligned}$$

Find exogeneity with One Weird Trick™

$$\frac{\text{Earnings}_{i}}{\text{Earnings}_{i}} = \beta_{0} + \beta_{1} \frac{\text{Education}_{i}^{\text{exog.}}}{\text{Education}_{i}^{\text{exog.}}} + \omega_{i}$$

How do we find only Education exog.?

Use an instrument!

Instruments

What is an instrument?

Something that is correlated with the policy variable

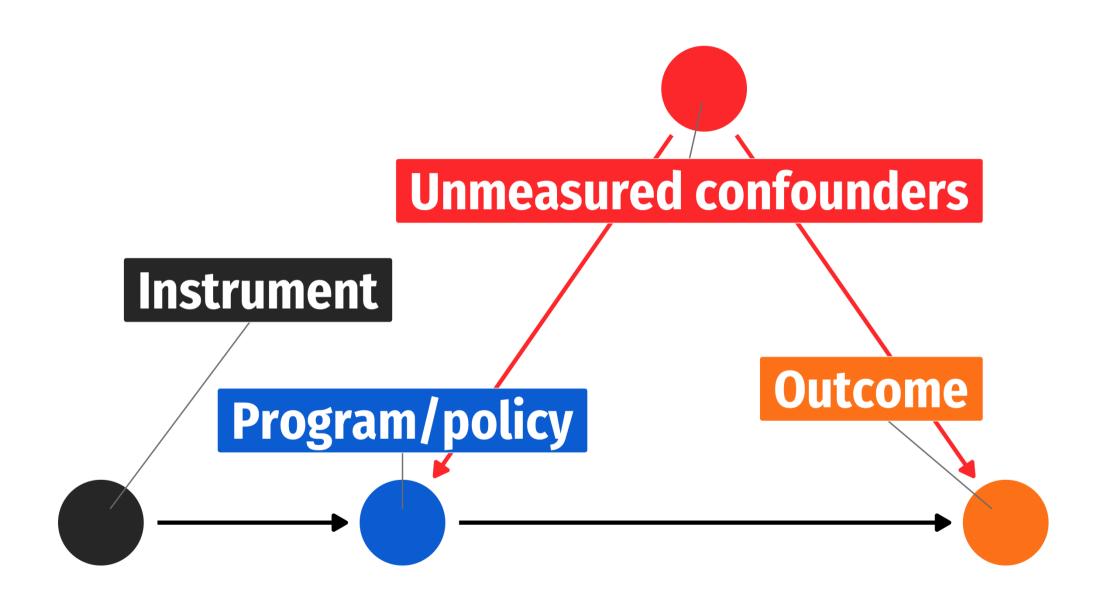
(Relevance)

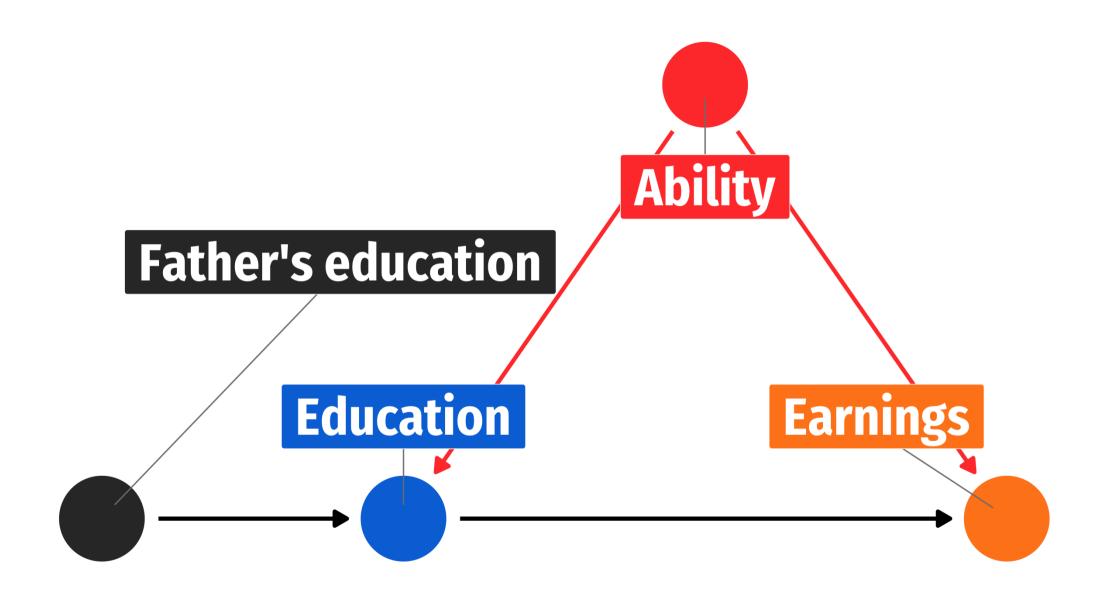
Something that does not directly cause the outcome

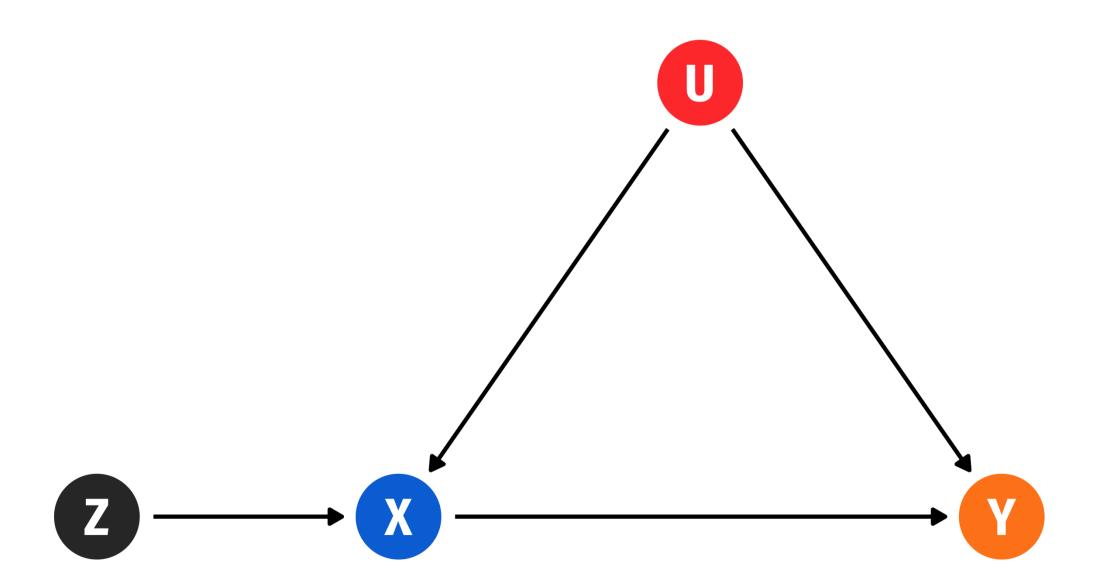
(Exclusion)

Something that is not correlated with the omitted variables

(Exogenity)







RelevanceCorrelated with policy

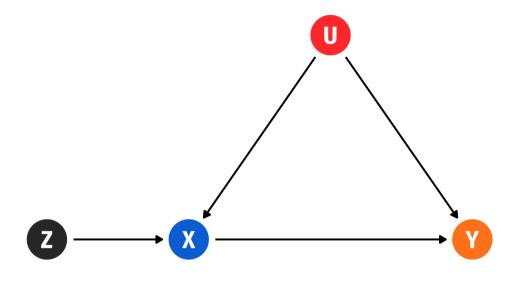
 $Z \rightarrow X$ $Cor(Z, X) \neq 0$

ExcludabilityCorrelated with outcome only through policy

$$Z \rightarrow X \rightarrow Y$$
 $Z \rightarrow Y$ $Cor(Z, Y \mid X) = 0$

Exogeneity
Not correlated
with omitted variables

 $U \rightarrow Z$ Cor(Z, U) = 0



Relevance testable with stats

Excludability testable with stats + story

Exogeneity requires story, no stats

Relevance

Instrument causes change in policy

 $Z \rightarrow X$ $Cor(Z, X) \neq 0$

Social security number

Probably not relevant (uncorrelated with education)

3rd grade test scores

Potentially relevant (early grades cause more education)

Father's education

Relevant (Educated parents cause more education)

Excludability

Instrument causes outcome only through policy

$$Z \rightarrow X \rightarrow Y$$
 $Z \rightarrow Y$ $Cor(Z, Y \mid X) = 0$

Social security number

Exclusive (SSN isn't correlated with hourly wages)

3rd grade test scores

Potentially exclusive (early grades probably don't cause wages)

Father's education

Exclusive (Parent's education doesn't cause your wages (lol))

Exogeneity

Instrument not correlated with omitted variables

 $U \rightarrow /Z$ Cor(Z, U) = 0

Social security number

Exogenous (Unrelated to anything related to education)

3rd grade test scores

Not exogenous (Grades correlated with other education factors)

Father's education

Exogenous (Birth to parents is random)

The huh? factor

"A necessary but not a sufficient condition for having an instrument that can satisfy the exclusion restriction is if people are confused when you tell them about the instrument's relationship to the outcome."

Scott Cunningham, Causal Inference: The Mixtape, p. 123

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education
Income	Education	Ability	Distance to college

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education
Income	Education	Ability	Distance to college
Income	Education	Ability	Military draft

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education
Income	Education	Ability	Distance to college
Income	Education	Ability	Military draft
Health	Smoking cigarettes	Other negative health behaviors	Tobacco taxes

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education
Income	Education	Ability	Distance to college
Income	Education	Ability	Military draft
Health	Smoking cigarettes	Other negative health behaviors	Tobacco taxes
Crime rate	Patrol hours	# of criminals	Election cycles

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education
Income	Education	Ability	Distance to college
Income	Education	Ability	Military draft
Health	Smoking cigarettes	Other negative health behaviors	Tobacco taxes
Crime rate	Patrol hours	# of criminals	Election cycles
Crime	Incarceration rate	Simultaneous causality	Overcrowding litigations

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education
Income	Education	Ability	Distance to college
Income	Education	Ability	Military draft
Health	Smoking cigarettes	Other negative health behaviors	Tobacco taxes
Crime rate	Patrol hours	# of criminals	Election cycles
Crime	Incarceration rate	Simultaneous causality	Overcrowding litigations
Labor market success	Americanization	Ability	Scrabble score of name

Outcome	Policy	Unobserved stuff	Instrument
Income	Education	Ability	Father's education
Income	Education	Ability	Distance to college
Income	Education	Ability	Military draft
Health	Smoking cigarettes	Other negative health behaviors	Tobacco taxes
Crime rate	Patrol hours	# of criminals	Election cycles
Crime	Incarceration rate	Simultaneous causality	Overcrowding litigations
Labor market success	Americanization	Ability	Scrabble score of name
Conflicts	Economic growth	Simultaneous causality	Rainfall

Instruments are hard to find!

The trickiest thing to prove is the exclusion restriction

Instrument causes the outcome *only through* the policy

Most proposed instruments fail this!

Rainfall as an instrument

People love using weather as an instrument... buuuuut...

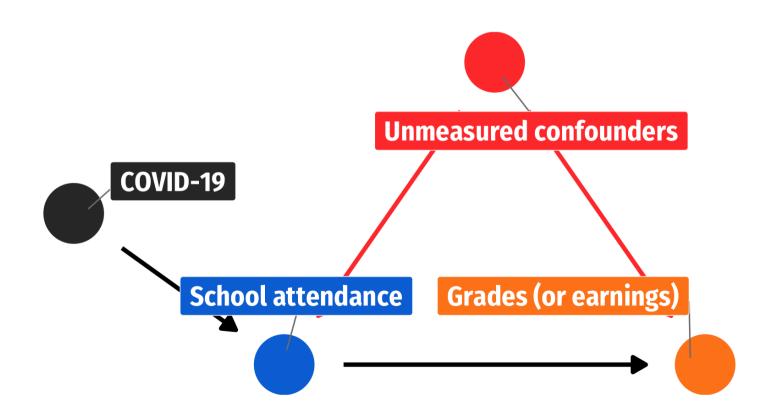
COVID-19 as an instrument

A global pandemic is a huge exogenous shock to social systems everywhere

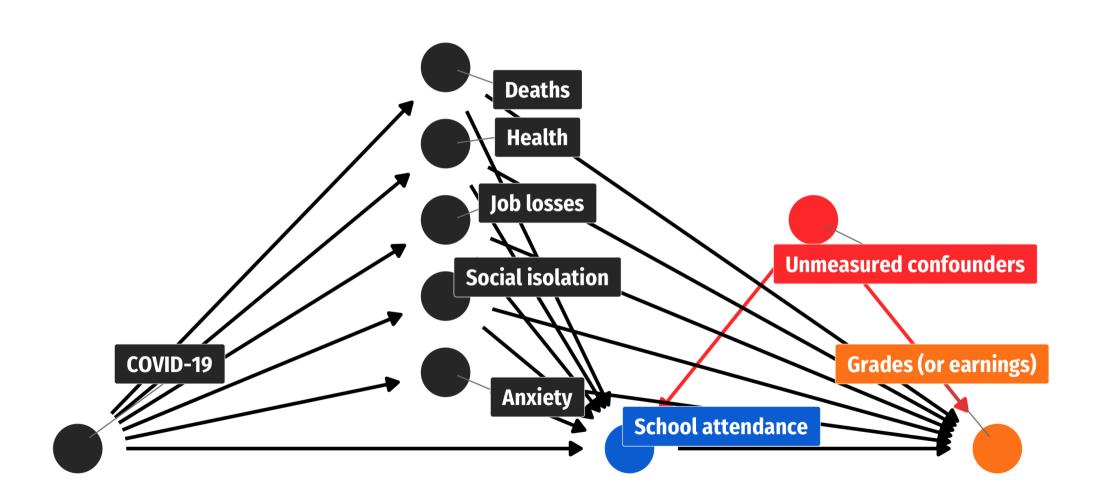
Maybe we can use it as an instrument!

COVID-19 as an instrument

What effect does closing schools have on student performance or lifetime earnings?



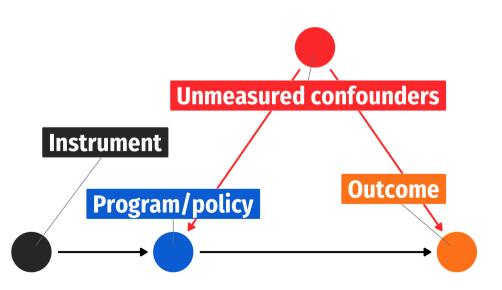
lolnope



Falsifying exclusion assumptions

Can you think of some other way that the instrument can cause the outcome outside of the policy?

If so, the instrument doesn't meet exclusion restriction



Instrument \rightarrow ?? \rightarrow outcome?

Rainfall \rightarrow ?? \rightarrow civil war?

Tobacco taxes \rightarrow ?? \rightarrow health?

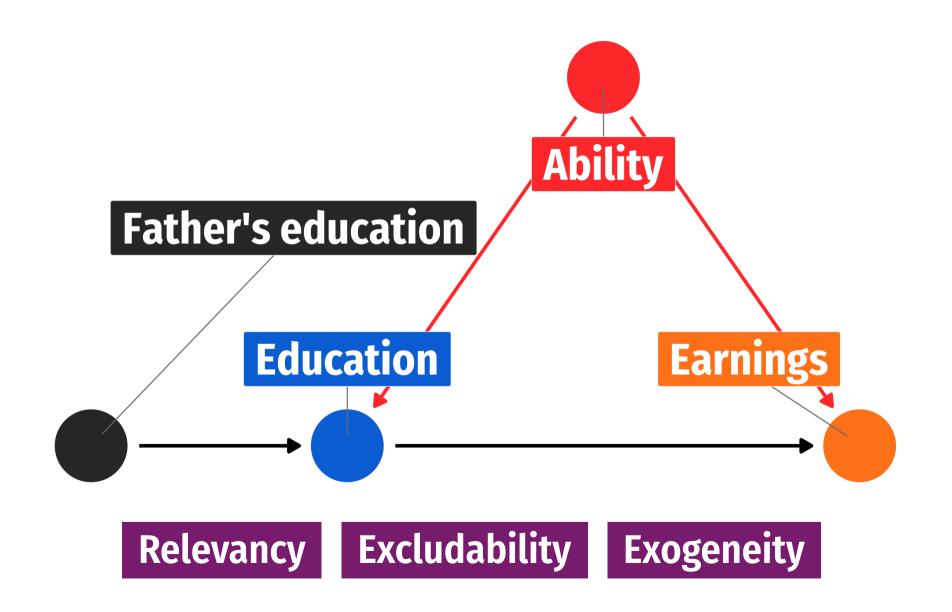
Scrabble score → ?? → Labor market success?

Using instruments

$Earnings_i = \beta_0 + \beta_1 Education_i + \varepsilon_i$

	Unadjusted	Forbidden				
(Intercept)	-59.378***	-85.571***				
	(10.376)	(7.198)				
educ	13.124***	7.767***				
	(0.618)	(0.456)				
ability		0.344***				
		(0.010)				
Num.Obs.	1000	1000				
R2	0.311	0.673				
F	451.244	1025.794				
* p < 0.1, ** p < 0.05, *** p < 0.01						

$$\begin{aligned} \mathbf{Earnings}_i = & \beta_0 + \beta_1 \mathbf{Education}_i + \varepsilon_i \\ & \beta_0 + \beta_1 (\mathbf{Education}_i^{\mathbf{exog.}} + \mathbf{Education}_i^{\mathbf{endog.}}) + \varepsilon_i \\ & \beta_0 + \beta_1 \mathbf{Education}_i^{\mathbf{exog.}} + \beta_1 \mathbf{Education}_i^{\mathbf{endog.}} + \varepsilon_i \\ & \beta_0 + \beta_1 \mathbf{Education}_i^{\mathbf{exog.}} + \omega_i \end{aligned}$$



Relevancy

Program ~ instrument

Years of education 16 20 12 Years of father's education

Clear, significant effect = relevant!

```
first_stage <- lm(educ ~ fathereduc, data = father_education)
tidy(first_stage)</pre>
```

```
# A tibble: 2 \times 5
                estimate std.error statistic p.value
     term
    <chr>
                   <dbl>
                             <dbl>
                                       <dbl>
                                                <dbl>
## 1 (Intercept)
                   2.25
                            0.172
                                    13.1 3.67e-36
## 2 fathereduc
                                      84.5 0.
                   0.916
                            0.0108
```

First-stage model F-statistic (statistic here) > 104 = strong instrument

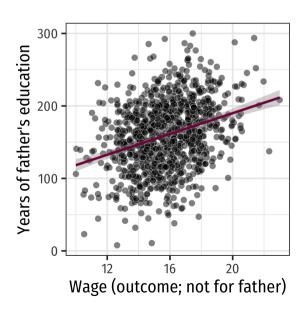
```
glance(first_stage)
```

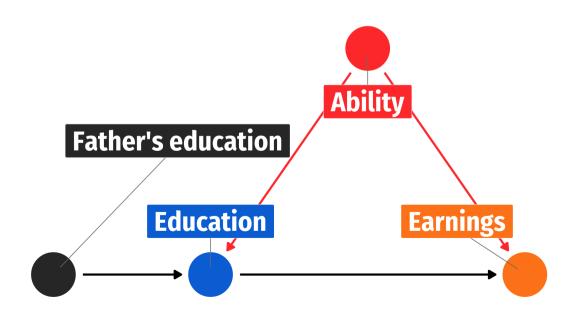
Exclusion

Does it meet exclusion assumption?

Father's education causes your wages only through your education?

Any other plausible node between father's education and earnings?





Exogeneity

Is assignment to your parents random?

Sure.

Is your parents' choice to gain education random?

lolz.

Two-stage least squares (2SLS)

Find exogenous part of policy variable based on instrument; use *that* to predict outcome

First stage

$$\widehat{\operatorname{Education}}_i = \gamma_0 + \gamma_1 \operatorname{Father's education}_i + v_i$$

"Education hat": fitted/predicted values; exogenous part of education

Second stage

Stage 1: Policy ~ instrument

```
first_stage <- lm(educ ~ fathereduc, data = father_education)
tidy(first_stage)</pre>
```

Stage 1: Check instrument strength

Model's F-statistic (statistic here) should be > 104 (though most books say > 10)

```
glance(first_stage)
```

Stage 1: Use first stage to predict policy

 $\widehat{ ext{Education}}_i = 2.251 + (0.916 imes ext{Father's education}_i) + v_i$

```
data_with_predictions <- augment_columns(first_stage, data = father_education) %>%
  rename(educ_hat = .fitted)
head(data_with_predictions)
```

```
## # A tibble: 6 x 5
##
     wage educ ability fathereduc educ_hat
     <dbl> <dbl>
                              <dbl>
##
                   <dbl>
                                       <fdb>>
## 1
     180. 18.5
                   408.
                               17.2
                                        18.0
## 2
     100.
           16.2
                   310.
                               15.5
                                        16.4
## 3
     125.
           18.2
                    303.
                               17.7
                                        18.4
## 4 178.
          16.6
                    342.
                              15.6
                                        16.5
## 5
     265. 17.3
                    534.
                               14.7
                                        15.8
## 6
     187. 17.5
                    409.
                               16.0
                                        16.9
```

```
educ_hat = 2.251 + (0.916 × 17.2) = 18.0
```

Stage 2: Outcome ~ predicted policy

	Unadjusted	Forbidden	2SLS IV			
(Intercept)	-59.378***	-85.571***	28.819**			
	(10.376)	(7.198)	(12.672)			
educ	13.124***	7.767***				
	(0.618)	(0.456)				
ability		0.344***				
		(0.010)				
educ_hat			7.835***			
			(0.755)			
Num.Obs.	1000	1000	1000			
R2	0.311	0.673	0.097			
F	451.244	1025.794	107.639			
* p < 0.1, ** p < 0.05, *** p < 0.01						

Unadjusted is wrong!

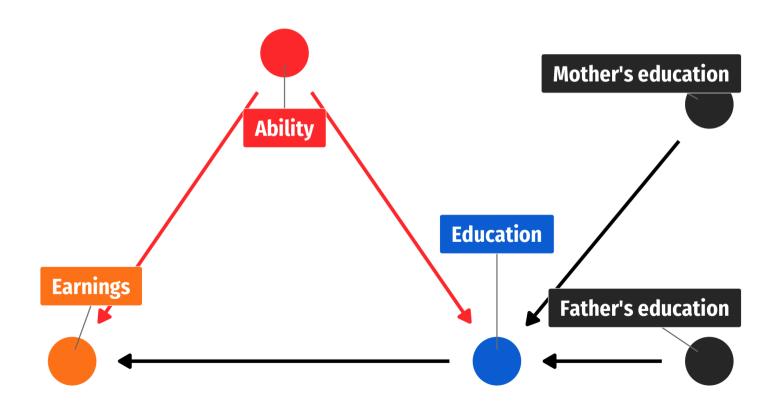
Forbidden is right, but not actually measurable!

2SLS is close and measurable!

One year of education causes hourly wage to increase by \$7.84

Multiple instruments

You can use multiple instruments to explain more of the endogeneity in the policy node



Multiple instruments

$$\widehat{\text{Education}}_i = \gamma_0 + \gamma_1 \text{Father's education}_i + \gamma_2 \text{Mother's education}_i + v_i$$

$$Earnings_i = \beta_0 + \beta_1 Education_i + \varepsilon_i$$

Other control variables

You can use control variables too!

For mathy reasons, all exogenous controls need to go in both stages

$$\widehat{\text{Education}}_i = \gamma_0 + \gamma_1 \text{Father's education}_i + \gamma_2 \text{Mother's education}_i + \gamma_3 \text{SES}_i + \gamma_4 \text{State}_i + \gamma_5 \text{Year}_i + v_i$$

$$\begin{aligned} \text{Earnings}_i &= \beta_0 + \beta_1 \widehat{\text{Education}}_i + \\ \beta_2 \widehat{\text{SES}}_i + \beta_3 \widehat{\text{State}}_i + \beta_4 \widehat{\text{Year}}_i + \varepsilon_i \end{aligned}$$

Faster, more accurate ways to run 2SLS

Running the first stage, calculating policy-hat, then running second stage is neat, but time consuming!

```
first_stage <- lm(educ ~ fathereduc, data = father_education)

data_with_predictions <- augment_columns(first_stage, data = father_education) %>%
    rename(educ_hat = .fitted)

second_stage <- lm(wage ~ educ_hat, data = data_with_predictions)</pre>
```

Your standard errors will be wrong unless you adjust them with fancy math by hand

Use R packages that do all that work for you instead!

Faster, more accurate ways to run 2SLS

ivreg() from the ivreg package

Outcome ~ 2nd stage stuff | 1st stage stuff

```
librarv(ivreg)
model ivreg <- ivreg(wage ~ educ | fathereduc,</pre>
                    data = father education)
tidy(model ivreg)
## # A tibble: 2 x 5
               estimate std.error statistic p.value
    term
    <chr>
                  <dbl>
                            <dbl>
                                     <dbl>
                                              <dbl>
## 1 (Intercept)
                  28.8 11.5
                                   2.51 1.21e- 2
## 2 educ
              7.83 0.683 11.5 1.13e-28
```

```
summary(model ivreg)
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.8187
                         11.4679
                                   2.513
                                          0.0121 *
## educ
            7.8349
                          0.6834 11.465 <2e-16 ***
## Diagnostic tests:
                  df1 df2 statistic p-value
## Weak instruments
                    1 998
                               7136 <2e-16 ***
## Wu-Hausman
                    1 997
                               1102 <2e-16 ***
```

Faster, more accurate ways to run 2SLS

iv_robust() from the estimatr package

Outcome ~ 2nd stage stuff | 1st stage stuff

educ 7.834935 0.6635423 11.807739 3.281862e-30 6.532837 9.137033

2

1 998

2 998

df outcome

wage

wage

(See also lfe() from the **felm** package for IV with fancy fixed effects)

	Unadjusted	Forbidden	2SLS IV (by hand)	2SLS IV (ivreg())	2SLS IV (iv_robust())	
(Intercept)	-59.378***	-85.571***	28.819**	28.819**	28.819***	
	(10.376)	(7.198)	(12.672)	(11.468)	(11.165)	
educ	13.124***	7.767***		7.835***	7.835***	
	(0.618)	(0.456)		(0.683)	(0.664)	
ability		0.344***				
		(0.010)				
educ_hat			7.835***			
			(0.755)			
Num.Obs.	1000	1000	1000	1000		
R2	0.311	0.673	0.097	0.261	0.261	
R2 Adj.	0.311	0.672	0.096	0.260	0.260	
N					1000	
* p < 0.1, ** p < 0.05, *** p < 0.01						

General IV process

1: Is the instrument relevant?

Instrument correlated with policy/program; F-statistic in 1st stage > 104

2: Does the instrument meet exclusion assumption?

Instrument causes outcome *only through* policy/program. **Good luck.**

3: Is the instrument exogenous?

No arrows going into instrument node in DAG

4: 2-stage least squares (2SLS)